Finite state projection based bounds to compare chemical master equation models using single-cell data.
نویسندگان
چکیده
Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort. In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.
منابع مشابه
A finite state projection algorithm for the stationary solution of the chemical master equation.
The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of ...
متن کاملA multiple time interval finite state projection algorithm for the solution to the chemical master equation
At the mesoscopic scale, chemical processes have probability distributions that evolve according to an infinite set of linear ordinary differential equations known as the chemical master equation (CME). Although only a few classes of CME problems are known to have exact and computationally tractable analytical solutions, the recently proposed finite state projection (FSP) technique provides a s...
متن کاملAnalysis and Numerics of the Chemical Master Equation
It is well known that many realistic mathematical models of biological and chemical systems, such as enzyme cascades and gene regulatory networks, need to include stochasticity. These systems can be described as Markov processes and are modelled using the Chemical Master Equation (CME). The CME is a differentialdifference equation (continuous in time and discrete in the state space) for the pro...
متن کاملOn Reduced Models for the Chemical Master Equation
Abstract. The chemical master equation plays a fundamental role for the understanding of gene regulatory networks and other discrete stochastic reaction systems. Solving this equation numerically, however, is usually extremely expensive or even impossible due to the huge size of the state space. Thus, the chemical master equationmust often be replaced by a reducedmodel which operates with a con...
متن کاملReduction and solution of the chemical master equation using time scale separation and finite state projection.
The dynamics of chemical reaction networks often takes place on widely differing time scales--from the order of nanoseconds to the order of several days. This is particularly true for gene regulatory networks, which are modeled by chemical kinetics. Multiple time scales in mathematical models often lead to serious computational difficulties, such as numerical stiffness in the case of differenti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 145 7 شماره
صفحات -
تاریخ انتشار 2016